
lable at ScienceDirect

Journal of Molecular Graphics and Modelling 105 (2021) 107865
Contents lists avai
Journal of Molecular Graphics and Modelling

journal homepage: www.elsevier .com/locate/JMGM
OctSurf: Efficient hierarchical voxel-based molecular surface
representation for protein-ligand affinity prediction

Qinqing Liu a, Peng-Shuai Wang b, Chunjiang Zhu a, Blake Blumenfeld Gaines a, Tan Zhu a,
Jinbo Bi a, c, Minghu Song c, *

a Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06279, USA
b Microsoft Research Asia, Beijing, China
c Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06279, USA
a r t i c l e i n f o

Article history:
Received 17 November 2020
Received in revised form
3 February 2021
Accepted 4 February 2021
Available online 9 February 2021

Keywords:
Protein-Ligand affinity prediction
Convolution neural networks
3D volumetric representation
Octree
Molecular surface
* Corresponding author. A.B. Bronwell Building, Ro
Unit 3247, University of Connecticut, Storrs, CT 06269

E-mail address: minghu.song@uconn.edu (M. Song

https://doi.org/10.1016/j.jmgm.2021.107865
1093-3263/© 2021 Elsevier Inc. All rights reserved.
a b s t r a c t

Voxel-based 3D convolutional neural networks (CNNs) have been applied to predict protein-ligand
binding affinity. However, the memory usage and computation cost of these voxel-based approaches
increase cubically with respect to spatial resolution and sometimes make volumetric CNNs intractable at
higher resolutions. Therefore, it is necessary to develop memory-efficient alternatives that can accelerate
the convolutional operation on 3D volumetric representations of the protein-ligand interaction. In this
study, we implement a novel volumetric representation, OctSurf, to characterize the 3D molecular sur-
face of protein binding pockets and bound ligands. The OctSurf surface representation is built based on
the octree data structure, which has been widely used in computer graphics to efficiently represent and
store 3D object data. Vanilla 3D-CNN approaches often divide the 3D space of objects into equal-sized
voxels. In contrast, OctSurf recursively partitions the 3D space containing the protein-ligand pocket
into eight subspaces called octants. Only those octants containing van der Waals surface points of protein
or ligand atoms undergo the recursive subdivision process until they reach the predefined octree depth,
whereas unoccupied octants are kept intact to reduce the memory cost. Resulting non-empty leaf octants
approximate molecular surfaces of the protein pocket and bound ligands. These surface octants, along
with their chemical and geometric features, are used as the input to 3D-CNNs. Two kinds of CNN ar-
chitectures, VGG and ResNet, are applied to the OctSurf representation to predict binding affinity. The
OctSurf representation consumes much less memory than the conventional voxel representation at the
same resolution. By restricting the convolution operation to only octants of the smallest size, our method
also alleviates the overall computational overhead of CNN. A series of experiments are performed to
demonstrate the disk storage and computational efficiency of the proposed learning method. Our code is
available at the following GitHub repository: https://github.uconn.edu/mldrugdiscovery/OctSurf.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

In computer graphics, the shape of three-dimensional (3D) ob-
jects can be represented with various formats, such as point clouds,
3D meshes, and voxel occupancy grids. This 3D geometric data can
be used by modern deep learning algorithms for 3D object recog-
nition. For example, ShapeNets [1] and VoxNet [2] are two pio-
neering works that integrate the volumetric occupancy grid
om 217, 260 Glenbrook Road,
-3247, USA.
).
representation and 3D convolutional neural networks (CNNs) to
detect 3D objects. Recent years have seen growing interest in the
computational chemistry community to apply machine learning-
based scoring functions, including emerging voxel-based CNN
techniques, for drug discovery problems [3]. AtomNet [4] is the first
deep CNN model developed for structure-based drug design. In
AtomNet, the protein-ligand complexes are first discretized into a
3D grid of voxels with various physicochemical atomic properties.
Then a 3D-CNN model is built to learn spatial features of protein-
ligand interaction near the drug binding site area and prospec-
tively predict the protein-ligand binding affinity. Since the intro-
duction of AtomNet, several other studies have applied volumetric
neural networks for molecular representation [5], protein-ligand

https://github.uconn.edu/mldrugdiscovery/OctSurf
mailto:minghu.song@uconn.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmgm.2021.107865&domain=pdf
www.sciencedirect.com/science/journal/10933263
www.elsevier.com/locate/JMGM
https://doi.org/10.1016/j.jmgm.2021.107865
https://doi.org/10.1016/j.jmgm.2021.107865


Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
affinity prediction [6e11], amino acid environment similarity
analysis [12], binding site comparison or classification [13,14], and
functional site detection [15,16]. In the above studies, 3D repre-
sentations of drug binding sites or protein-ligand interaction are
derived based on voxelization of the entire protein binding pocket
or bound ligand complex. In molecular modeling, the molecular
surface representation is another alternative approach that has
been widely used to encode chemical features and geometric
morphometrics of molecules involving protein recognition. Several
geometric descriptors and fingerprints [17e21] had been devel-
oped to describe protein surface features. For example, Gainza et al.
[22] proposed a geometric deep learning framework named MaSIF,
to embed precomputed geometric and chemical input features on
surface patches of proteins into 2D interaction fingerprints for
protein pocket-ligand prediction, protein-protein interaction site
prediction, and ultrafast scanning of protein surfaces. Very recently,
Stelios et al. [23] proposed DeepSurf, a method that generates a
new surface representation by using a set of localized voxel grids
around certain sample points on the protein solvent-accessible
surface and utilizing the ResNet architecture to predict the
ligandability score of these surface points. These previous works
inspire us to develop a novel surface-based volumetric represen-
tation for the prediction of protein-ligand binding affinity.

In most current voxel-based CNNs, a 3D object is represented by
the traditional dense voxel method. This method involves a cubic
space that contains the 3D object, such as a protein pocket with a
bound ligand, being divided into equal-sized grid cells. The mem-
ory usage of dense voxel-based approaches has cubic complexity
with respect to spatial resolution, which sometimes renders them
intractable at high resolutions. Thus, although voxel-based CNNs
have quickly gained popularity in many 3D object recognition ap-
plications, the volumetric representation suffers from a memory
bottleneck. Additionally, for many 3D objects, especially 3D sur-
faces, such as the molecular surface, there can be a lot of empty
voxels within the grid enclosing the 3D object. Traditional CNN
algorithms designed for the dense data type cannot handle such
sparse 3D data efficiently; therefore, a significant amount of
computation will be wasted on the convolution operation and zero
multiplications of those non-occupied voxels.

Several variants of volumetric CNNs have been proposed to
address the sparsity issue of 3D data representation. For instance, Li
et al. propose a resolution-agnostic approach, Field Probing Neural
Network (FPNN) [24], which replaces the convolutional layers in
CNNs with field probing layers and employs a small set of field
probing filters to extract relevant features of the 3D object effi-
ciently. Kuzminykh et al. propose using the wave transform to
modify the 3D representation of the molecular structure and allow
atoms to be extended to fill nearby voxels [5]. In addition, a number
of alternative 3D data structures have been utilized to accelerate
the convolution on 3D sparse data. Sparse 3D CNNs [25] and Sub-
manifold Sparse CNNs [26,27] encode sparse 3D data using a hash
table so that convolution will be computed only on the non-empty
voxels. Octree-based CNNs, such as OctNet [28] and OeCNN [29],
employ the octree representation to efficiently generate the high-
resolution volumetric input for 3D-CNN. Octree is a tree data
structure that has been widely used in computer graphics that
recursively partitions a 3D bounding box into eight sub-volumes or
octants. At each recursive iteration, only non-empty octants will be
partitioned, so groups of empty octants are stored with less data at
a lower resolution. Eventually the octants at the finest level of the
octree encode the shape information of the 3D object with high
detail. OctNet adopts a combination of the grid and octree data
structure by using a maximal tree depth of three to encode the 3D
representation of objects with binary features, and limits its con-
volutional network operations within the interior volume of 3D
2

objects. Because the sparsity issue is more obvious when repre-
senting only the surface of a 3D object, OeCNN uses the pure octree
structure to encode the surface information of 3D objects and limits
3D CNN operation to octants at the finest level of the octree. This
strategy leads to a significant reduction of computation cost to O
(n2), from O (n3) of the full voxel-based network (with n repre-
senting the number of voxels in a dimension). It enables deeper
networks and higher resolution at regions of interest in new 3D-
CNN architectures.

A direct volumetric representation of protein-ligand complexes
or pockets will face the same sparsity issue as in 3D computer
graphics. For comparative studies, all protein-ligand binding
pockets with various sizes are often orientated within an initial
cube that is large enough to enclose all training pockets. Hence,
there will be a large number of unoccupied voxels within the
enclosing grid when adopting the traditional dense voxel repre-
sentation. For example, in Fig. 1, a protein-ligand binding pocket
example (PDB ID: 4II9) is orientated in the center of a 3D bounding
box. When the grid is partitioned into voxels with variate resolu-
tions such as 1, 0.5, and 0.25 Å, less than 7% of voxels overlap with
protein and ligand surfaces. As the resolution increases, the occu-
pancy rate of these surface voxels becomes much lower. This
observation motivates us to apply a solution tailored for these 3D
sparsity issues to improve efficiency.

Here we propose a computational framework that combines a
novel surface-based volumetric representation and efficient 3D-
CNN operations to predict protein-ligand binding affinity. Most
current 3D-CNN methods employ the traditional voxel represen-
tation localized at protein or ligand atoms to capture the inter-
molecular atomic interaction between the protein and ligand.
Instead, we adopt an alternative way to characterize 3D molecular
recognition at the surface level. Protein and ligand surfaces are
transformed into the octree-based volumetric representation,
which we call OctSurf, to delineate their surface contact and shape
complementary. Compared to conventional CNN models with
dense voxel input, the OctSurf voxel representation consumes
much less memory at the same resolution. It also enables us to
generate the volumetric representation of molecular surfaces at
much higher resolutions. Moreover, by restricting CNN operations
over octants near the molecular surface region, our implementa-
tion also significantly reduces the computational overhead of 3D-
CNNmodeling while maintaining similar, or even better, prediction
accuracy. More details about our implementation will be discussed
in the Material and Method or the Supplementary Materials
sections.

Finally, several recent studies [30e34] have pointed out the high
performance of some machine learning-based scoring functions or
deep learning models for the protein-ligand affinity prediction may
be due to hidden biases within the training set. For example, Sieg
et al. [30] showed that ligands with a molecular weight larger than
500 in the DUD-E [35] data are dominated by active compounds.
Such non-causal bias can be easily fit by machine learning models
to distinguish active and decoy compounds, and result in the un-
noticed “Clever Hans” phenomenon [36]. Chen et al. [31], Su et al.
[32], and Shen et al. [33] have exemplified that the potential
analogue bias or the protein similarity between training and test
data can make a significant impact on the performance of machine
learning-based models. More recently, Yang et al. [34] demon-
strated that models derived from protein or ligand structures alone
will still yield unexpectedly good performance on test datasets.
These works remind us that it is necessary to evaluate the potential
issue of bias and the generalizability when developing new ma-
chine learning-based models. Therefore, we carry out several
additional control experiments to inspect the sensitivity of our
generated 3D-CNN models to the decoyed or biased training sets.



Fig. 1. The sparseness of protein-ligand surfaces in the volumetric representation. An example protein-ligand pocket is orientated in the center of a bounding box with a size of
64 � 64 � 64 Å3. As shown in the above figure, the occupancy rate decreases as the resolution increases. The occupancy rate here is defined as the ratio between the number of
occupied voxels and the total number of voxels in the enclosing grid.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
2. Materials and method

The overall strategy of our approach is illustrated in Fig. 2. First,
3D coordinates of the binding pocket and bound ligand pre-
processed by the PDBbind database [37] are transformed into the
3D surface point cloud. Second, obtained 3D dot surfaces are
originated at the center of a bounding box that is large enough to
enclose all training protein-ligand pockets. Third, these surface
point clouds are further rasterized into a digital volumetric repre-
sentation, OctSurf, which is based on the Octree data structure.
Finally, the OctSurf representations are fed into 3D-CNNs archi-
tectures for the protein affinity prediction, e.g., VGG and ResNet, by
restricting the CNN operation on octants of the smallest size. We
also implement the dense voxel version of molecular surface rep-
resentation for the result comparison.
2.1. Datasets

Two major benchmark datasets of protein-ligand complexes,
PDBbind [37] and Comparative Assessment of Scoring Functions
(CASF-2016) [38], are employed here for model construction and
assessment. The PDBbind set (v2018) includes two subsets, the
general set with 11,663 complexes and the refined set with another
4463 complexes. The refined collection was selected based on a few
quality filters regarding experimental binding data or potency, the
crystallography resolution, the inherent nature of the protein-ligand
interaction, etc. The CASF benchmark data, also known as the
PDBbind-v2016 core set, consists of 285 high-quality protein-ligand
complexes sampled from 57 protein targets within the PDBbind
refined set. In this study, those 285 complexes in the core set are held
Fig. 2. The pipeline of our 3D-CNN implementation for the protein-ligand affinity predict
bound ligands are rasterized into the octree-based volumetric representation, OctSurf, whi

3

out as the independent test dataset. We exclude protein complexes
in the test set from the general and refine sets of PDBbind v2018 and
randomly sampled 600 complexes out of the refined set as the
validation set for fine-tuning hyperparameters. The remaining
protein-ligand complexes in both the general and refined sets of
PDBbind v2018 comprise the training set for 3D-CNNmodeling. After
we constructed our predictive models, we also tested them on newly
deposited protein-ligand complexes in the latest version of PDBbind
(v2019), which includes 1146 and 394 extra complexes in updated
general and refined sets respectively. We used the high-quality
refined set of PDBbind v2018 as the reference set to compare the
storage space difference between our proposed OctSurf and the
conventional dense voxel representations.

Similar to the published Pafnucy convolution model [39], we
compute twenty-one atomic features to describe the properties of
each surface point. These twenty-one features indicate the pres-
ence of protein or ligand atoms, their specific atom types (e.g., H, B,
C, N, O, P, S, Se, halogen, metal), related physicochemical categories
(hydrogen bond acceptor or donor, hydrophobic, aromatic, ring),
specific atomic hybridization (e.g., sp1, sp2, and sp3), the connec-
tion valence with heavy atoms and hetero-atoms, partial atomic
charge, and van der Waals atomic radius. In addition, to describe
geometric information of a molecular surface, we calculate the
normal vector of each surface point. Each normal vector of surface
points includes three coordinate directions, which describe the
surface curvatures and shape complementarity between protein
and ligand surfaces. A total of twenty-four features are associated
with each octant and are derived from the averaged feature values
of surface points within this octant, as described in more detail in
Section 2.2.2.
ion based on the OctSurf representation. Surface point clouds of binding pockets and
ch are fed into the 3D-CNNs for binding affinity prediction.



Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
During the 3D-CNN modeling process, we also implement on-
the-fly data augmentation that rotates and translates original sur-
face points along all axes to increase the number of training ex-
amples. To measure the performance of CNNmodels on the test set,
we calculate the averaged prediction of 40 randomly augmented
OctSurfs for each complex, then compare the average prediction
with the true binding affinity label.

2.2. Molecular representation e OctSurf

2.2.1. The generation of van der Waals surface points
Preprocessed protein complex structures from PDBbind,

including the pocket and ligand in pdb and mol2 file formats, are
used to generate their the point cloud representations of their van
der Waals surfaces. A point cloud is a collection of data points with
geometric coordinates and other associated features that describe
the shape of a 3D object. Each protein-ligand complex structure is
placed within a 64 � 64 � 64 Å3 bounding box centered on the
geometric center of the ligand. In other 3D-CNN protein-ligand
affinity prediction studies, the sizes of their bounding boxes are
often in the range of 20 to 32 Å [7,39,40]. We conduct a statistical
analysis of the pocket sizes over the entire PDBbind refined dataset,
the size of 64 Å is chosen so that the bounding box is large enough
to cover all protein-ligand pockets and we do not need to chop off
any protein atoms. More details of the pocket size analysis are
included in SupplementaryMaterials Figure S1. Point clouds for van
der Waals surface of ligands and protein pockets are generated
using an inhouse Java program based on the non-analytic Double
Cubic Lattice Method (DCLM) [41] implemented in the CDK package
[42]. Several structural and atomic property features are assigned
to each surface point.

2.2.2. The octree data structure representing surface points
Octree is one of the most widely used space partitioning

structures because of its flexible search hierarchy [28], where each
node corresponds to a cubic search space called an octant. It has
been used in other research areas, such as depth fusion [43], image
rendering [44], and 3D reconstruction [45], to help improve
memory efficiency. The key concept of the octree is to recursively
partition non-empty cubic space into smaller cells by bisecting each
cubic side. A significant amount of memory can be saved from the
vacant cubic regions, which dominate the surface representation.

Fig. 3 is an illustration of the octree concept. Fig. 3(a) illustrates
the recursive partition process of the octree algorithm at a different
resolution or depth level. Only non-empty octants containing sur-
face points from protein or ligand atoms are further partitioned at
the next depth, while those empty octants remain intact. Fig. 3(b)
and (c) exemplify the difference between the conventional dense
voxel and our octree-based OctSurf representation. Compared to
the conventional representation, the octree data structure uses
many fewer voxels and thus reduces memory consumption. At the
higher resolution, such a reduction will be substantial. The recon-
structedmolecular surface in around 0.1 Å resolution by the OctSurf
is depicted in Fig. 3(f). It approximates the ground truth surface of
the 1A1E protein-ligand complex, which is shown in Fig. 3(e). The
Octsurf representation that shows the boundaries of all octants is
shown in Fig. 3(g).

From an algorithm point of view, the two most popular strate-
gies for constructing an octree are from the top-down [28] and from
the bottom-up [29,30]. In the classical top-downway, as illustrated
in Fig. 3(a), the octree starts from the bounding box that contains
the 3D object as the root node (depth ¼ 0), and then recursively
subdivides all non-empty octants into child nodes in a breadth-first
search process until reaching the desirable resolution at terminal
leaf nodes. For example, to reach 1 Å resolution for a
4

64 � 64 � 64 Å3 bounding box, we do this recursive step 6 times.
Those octants that are not divided are named leaf octants whereas
the octants that are further divided are referred to as non-leaf oc-
tants. On the other hand, the bottom-up algorithm starts from non-
zero voxels, or non-empty octants in the finest level, and then finds
their corresponding parent octants and sibling octants under the
same parent node. This process repeats each time on the parent
octants found in the previous step until it reaches the root node.We
adopt the bottom-up approach in this work because it is more
friendly to constructing octrees in parallel.

In this study, the hierarchical information of octrees and the
features of consisting octants are stored using the following three
series of vectors also used in OeCNN [29]: shuffle keys, labels, and
input signals. Shuffle keys and labels are assigned for every octant,
and input signals are only for the octants at the finest level. Those
elements will be briefly discussed below while more details can be
found in Section 2-5 of Supplementary Materials.

Shuffle key is used to indicate the location of an octant within the
bounding box so that each octant can be conveniently identified.
Because each non-leaf octant has eight children, each child octant
can be encoded with a 3-bit code (i.e. a number from 0 to 7). Fig. 4
(a) shows the order of how the eight child octants are indexed, and
(b) shows the shuffle keys stored in a vector called Sd at depth d¼ 0,
1, and 2 respectively. At depth d � 1, a shuffle key is represented by
a 3d-bit code where the first 3ðd�1Þ bits represent the parent
octant at a depth of d� 1, and the remaining 3 bits indicate the
relative position of the child octants at current depth. For instance,
in Fig. 4(b), the shuffle key 5 for the octant at the depth of d ¼ 1is
equivalent to 3-bit binary key 101. The 3 bits are for x,y,z co-
ordinates separately, and 0/1 indicates the left/right position along
the corresponding direction. Hence, key 101 means the octant is
right in the x and z coordinates but left in the y coordinatewithin its
parent octant. Thus, its children have 6-bit keys, and the first 3 bits
are all 101. For example, the first child has a binary key to 101,000,
which equals a decimal number of 40. The 2nd child has key
101,001 ¼ 41. The shuffle keys at every depth are sorted in
ascending order. By sorting the “label” and “input” signals in the
same order as the shuffle keys, the neighboring and parent-child
relationships can be immediately calculated for a given octant.

Label vectors store the order of non-empty octants at each level
in order to accelerate the process of tracing children octants. As
illustrated in Fig. 4(b), the labels are put below the shuffle keys. The
labels of empty octants are 0 shown in yellow color, and the non-
empty nodes with non-zero label values are marked in orange.
For example, the 7th element (or the 2nd non-empty node) of the
Label at depth d¼ 1, L1½6�; is equal to 2. Given a non-empty octant
with index j at the depth d, we can compute the index k of its 1st
child octant at the depth (dþ 1) by k ¼ 8*ðLd½j� � 1Þ. In Fig. 4(b), the
octant with index 6 (highlighted with a red box in Fig. 4(b)) at the
depth of d ¼ 1 has its 1st child indexed by 8*ðL1½6� � 1Þ ¼ 8, so
S2½8� at the depth of d ¼ 2 stores the shuffle key 48 of the 1st child.
Since the octants are ordered so that 8 child octants that share a
parent octant are stored together, the rest of the child octants can
also be quickly located in the vector.

Input signal. Each surface point in the point cloud is associated
with relevant atomic and curvature features. The corresponding
features of the finest leaf octants are computed by averaging fea-
tures of all points inside the specific octant. For those empty leaf
octants which do not include any point, we simply set the feature
values to 0. We put the features of all the finest leaf octants in a
vector, referred to as the input signal vector. The input signal vector
will have N �M dimension, where N represents the number of the
finest leaf octants in the octree, and M is the number of features
calculated for an octant.



Fig. 3. The Illustration of the OctSurf representation for a protein-ligand pocket example (pdb id: 1A1E) in a 48*48*48 Å3 bounding box. (a): the recursive division process at various
resolutions or depths to generate an Octree-based volumetric representation of the molecular surface, an OctSurf. The surfaces of the protein and ligand are highlighted in blue and
gray, respectively; (b): the conventional volumetric representation with equal-size voxels. Those voxels containing both protein and ligand surface points are colored in green; (c):
the corresponding OctSurf representation at the same resolution. Compared with the conventional representation, the Octree data structure uses much fewer voxels; (e): the input
binding pocket from PDBbind; (f): 3D OctSurf representation of the binding pocket with a resolution of around 0.1 Å; (g): example of the grid subdividing and resulting 3D OctSurf
at the depth of 5. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
2.3. 3D-CNN operations on OctSurf

Although the proposed OctSurf data structure can be used in
conjunction with any suitable 3D neural network architecture, we
have focused on two types of classical CNN architecture in this
work: the visual geometry group (VGG) network [46], and the re-
sidual network [47] (ResNet). These architectures have beenwidely
adopted as the benchmark network structure for both 2D image
recognition and 3D image classification [48]. The convolution and
pooling operations used in these networks are modified to be
adapted to the above OctSurf data structure. Our VGG-like and
ResNet-like network structures for OctSurf are shown in Fig. 5. In
both network structures, we use the stride of 1 and the same
padding in convolution layers so that the output (OctSurf) of a
convolution layer will have the same depth as that of the input
OctSurf. The number of channels of the output may differ from the
input OctSurf (C ¼ 24), and depends on the number of convolution
filters in the layer. For example, in Fig. 5(a), the first convolution
layer takes an OctSurf of depth D with 24 channels as input and
generates an OctSurf of depth Dwith 2maxð11�D; 3Þ channels. We use
at least 8 channels in case 211�Dis too small. Every convolution layer
is also followed by a batch normalization [49] layer and a Rectified
Linear Unit (ReLU) activation layer. The max-pooling layers have a
5

kernel size of 2 and stride of 2, which transforms an OctSurf of
depth d into an OctSurf of depth d� 1. After the pooling, convo-
lutions with the OctSurf of depth d� 1 can be performed in the
next layer.

As shown in Fig. 5(a) below, in the VGG structure, we use ðD�2Þ
pairs of convolution layers and max-pooling layers to process
OctSurf data from the depth D down to 3, followed by two fully
connected layers. In the ResNet structure, we apply 3 Residual
Blocks (ResBlocks) at each depth from D down to 3 as shown in
Fig. 7(b), except for the first layer where we have an additional pure
convolution layer. A max-pooling layer is also applied after 3 Res-
Blocks at each depth, except in the layer next to the last we perform
a global average pooling (with kernel size 8 on OctSurf of depth 3)
to get a single octant. Then a fully connected layer is applied to this
single octant to make the final prediction. In a ResBlock, there is a
shortcut path and a residual path that handle the input indepen-
dently. If the input channel Na and the output channel Nb for the
block are identical, the shortcut path is just an identity function.
Otherwise, the shortcut path is a convolutional layer with the
output channel number Nb. The residual path includes three con-
volutional layers. The outputs from the last convolution layers
(when applicable) in both paths are not rectified until we sum
them, and the rectified summation is the output of the ResBlock.



Fig. 4. An illustration of Shuffle Key and Label in the OctSurf data structure. (a) How the eight child octants are indexed where red color numbers index the octants in the front and black
numbers index the octants in the back. Indexing starts from the red arrow, and follows the rainbow color order to the final purple arrow, and (b) the shuffle key vectors Sd (white and gray),
and the label vectors Ld (yellow and orange) at d ¼ 0;1;2. White and yellow cells correspond to empty octants, which are not sub-divided; Gray and orange cells correspond to non-empty
octants, sub-divided into 8 children (see arrows). For empty octants, their labels are zero. For non-empty octants, the label value p of an octant indicates that it is the p-th non-empty octant
at this depth (starting from 1). The Label is used to find the children of parent octants. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 5. The configuration of VGG and ResNet network structure. (a) VGG configuration; (d, 3 � 3 � 3 Conv., c) means that with an OctSurf at depth d as inputs, we perform convolution
operation with the filter size of 3 � 3 � 3 and the number of output channels c in this layer. FC: fully connected layers; (b) ResNet configuration; If the number of input channels and output
channels are identical, an Identity Residual Block is applied. Otherwise, the Projection Residual Block will be utilized. (c) and (d): Configurations of Residual Block with Identity and
Projection shortcuts.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865

6



Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
In the 3D convolution with OctSurf, each filter is a small cube of
m-by-m-by-m (here m ¼ 1 or 3), and the center of this cube moves
along the order of sorted keys SDfor finest level octants. The
convolution FðOÞwill be computed as a weighted sum of all of the
feature values in the finest octants covered by the cube, and the
weights are determined by the learned filter as follows:

FðOÞ¼
X
n

X
i

X
j

X
k

W ðnÞ
ijk T

ðnÞ
�
Oijk

�

where Oijk represents a neighboring octant of O, T ðnÞð ,Þ represents
the n-th feature associated with Oijk, andW ðnÞ

ijk ’s are the weights in a

3D convolution filter. A 2D illustration of the convolution and
pooling operations are shown in Fig. 6. Note that the regular 3D
convolution traverses through all voxels in all grids, while 3D
convolution on OctSurf only focuses on those finest-level octants.
Thus, a large amount of calculation on dominating empty regions
can be omitted to achieve efficiency. Moreover, regular 3D convo-
lution on sparse objects brings the dilation problem [27] that some
empty grids will also be assigned non-zero features after the
convolution if any of their neighbors are not empty. This problem
could become more severe in the deeper ResNet structure with
more convolution layers because non-zero feature values could
propagate to empty voxels far from the surface of the object, which
might add noise to the predictions. However, convolution on Oct-
Surf only focuses on the finest octants, which are either the surface
or direct neighbor of the surface, so the dilation issue is alleviated.

The CNNs perform max-pooling and average-pooling at appro-
priate layers. Similar to the convolution layer, a pooling layer also
acts on the finest level octants of its input. For a cubic region con-
taining p finest-level octants, the max (or average) pooling opera-
tion creates a single octant with the maximal (or average) feature
value of all the p octants. In OctSurf computation, in max-pooling
layers with a kernel size of 2, the cubic regions are redefined to
be parents of the eight octants as indicated by the shuffle keys.
When performing a global pooling operationwith a kernel size of 8
on OctSurf of depth 3, the cubic region covers the whole OctSurf.
After a pooling layer, the OctSurf moves up to a coarser layer in the
hierarchy, e.g., depth d to d� 1 after the max-pooling, or 3 to 0 after
the global average pooling using our network configurations.

We adopt the 3D CNN convolution and pooling operations
implemented in the recent TensorFlow version of OeCNN [29]
where the octree data structure is implemented in Cþþ. We revise
the octree implementation to operate on molecular surface point
clouds. Our experiments are executed on a Linux server that con-
sists of an Intel(R) Xeon(R) Gold 6150 CPU (2.70 GHz) with 36 cores
and 192 GB RAM, and one Nvidia V100 GPU card with 32 GB
memory.
Fig. 6. Convolutional and pooling operations. (a) Conventional convolution in dense voxel s
with OctSurf input only convolve over the finest octants and thus reducing computation cost
the feature of their parent octant. Here the size of the kernel is set to 2. After pooling, the

7

3. Experiment results and discussion

3.1. 3D OctSurf volumetric representation of protein and ligand
surfaces

Four protein-ligand complexes, 1A1E, 2FXU, 3EL1, and 5ORV, are
randomly selected from the PDBbind dataset as examples to eval-
uate the generated OctSurf representation. Their reconstructed
molecular surfaces from the OctSurf volumetric representation at
various resolutions are depicted in Fig. 7. Based on the figure, we
observe that resolutions beyond 1 Å can reasonably capture the
shape information of protein pockets and bound ligands. When the
resolution is increased to be higher than 0.25 Å, more fine-grained
contextual detail can be revealed.
3.2. Performance evaluation

We evaluate and compare the performance of OctSurf-based
3D-CNN models against the CNN models on dense voxel repre-
sentations from the following three aspects at various resolutions
or depth levels: (1) the data storage size of the generated OctSurf
and dense voxel, along with the corresponding relationship be-
tween the file size and the occupancy rate; (2) the GPU memory
consumption and computation time required for 3D-CNN training;
and (3) the predictive performance of the 3D-CNNmodels based on
both OctSurf and dense voxel representations. We also compile two
decoy sets by removing either the ligand or protein from the
original training co-crystal structures, and check whether our 3D-
CNNmodels maintain the performance when switching to decoyed
examples. In addition, since the protein similarity between the
training and test sets has been found to have a significant effect on
the performance of some machine learning-based scoring func-
tions, we carry out a experiment to inspect how models behave
when applying varied protein topological similarity thresholds to
exclude training complexes that are structurally similar to any
proteins in the test set.
3.2.1. Comparison of data storage for OctSurf vs. dense voxel
representations

As discussed in Section 2.2, a series of vectors, including shuffle
keys, labels, and input signals, comprise OctSurf representation.
Both shuffle keys and octants’ labels are recorded as integers while
the input signals for octants at the finest level are real values, so the
latter are saved as floating-point numbers. Some other information,
such as the total depth and the number of octants at each depth, are
also necessary to split the vector series and parse the shuffle key
and label for each depth. In theory, we need
2ntotal � sizeint þ nfinest � nfeature � sizefloat þ 784 bytes of disk space
tarts from the left top corner, and ends at the right bottom corner while our networks
; (b) During the pooling computation, the features of all sibling octants are pooled to be
depth of the octree structure is reduced by one.



Fig. 7. Reconstruction of the molecular surface of the protein pocket (blue) and bound ligand (gray) under different resolutions. Boundary surfaces of protein pockets are rep-
resented by blue voxels, while gray voxels highlight ligand surfaces. At a lower resolution, e.g., 2 Å, some voxels may contain surface points from both protein and ligand atoms.
These voxels are highlighted in green. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
or memory to store the OctSurf data representation, where ntotal is
the total number of octants at all depth levels, nfinest is the number
of octants at the finest level, nfeature is the number of features, sizeint
and sizefloat are both 4 bytes, and the remaining 784 bytes are used
to store all other information.

We first analyze the storage usage of the OctSurf molecular
representation of the example protein-ligand complexes (PDB IDs:
1A1E, 2FXU, 3EL1, and 5ORV) discussed in Section 3.1. The results
are summarized in Table 1. The measured disk storage of OctSurf is
consistent with the above theoretical expectation. The dense voxel
representation consumes the same disk storage for different com-
plexes at a specific resolution regardless of their occupancy rates.
However, different complexes can have distinct file sizes for OctSurf
representations. Compared with the dense voxel representation, an
OctSurf representation uses a substantially smaller number of
consisting elements. For instance, at the resolution of 0.0625 Å,
dense voxel representations of these complexes require nearly
100 GB of disk storage, while the corresponding OctSurf only
consumes less than 0.5 GB. Therefore, the OctSurf data structure
enables us to generate volumetric molecular representation at
8

much higher resolutions that are prohibitive with the dense voxel
representation. The required disk storage ratio for OctSurf repre-
sentations versus for dense voxel representations is roughly line-
arly correlatedwith the occupancy rate. The ratio is around twice as
much as the occupancy rate in Table 1. The occupancy rate drasti-
cally decreases as the resolution gets higher, so the OctSurf repre-
sentation saves a large amount of space compare to the dense voxel
representation for the same protein-ligand complex. For instance,
OctSurf takes around 5% of the storage used by the dense voxel
representation at the resolution of 1 Å, but less than 0.5% of the
dense voxel storage at the resolution of 0.0625 Å. OctSurf not only
costs less disk space to store, but also requires less memory to
perform CNN operations.

We further generate OctSurf representations of all 4463 com-
plexes in the PDBbind refined set and analyze their data storage
distribution under different resolution settings. Fig. 8(a) shows that
the storage usage increases as the resolution increases while still
keeps in a reasonably small size. The storage size of OctSurfs at the
1 Å resolution ranges from 0.47 MB to 2.71 MB. Under 0.25 Å res-
olution, it increases to between 10.06 MB and 62.54 MB. We also



Table 1
Comparisons of the storage needed for a pocket-ligand complex within a 64 � 64 � 64 Å3 bounding box around the center of the ligand.

Resolution PDB ID 1A1E 2FXU 3EL1 5ORV

2 Å Dense Voxel (323) 3 MB
OctSurf (depth ¼ 5) 0.18 MB 0.25 MB 0.26 MB 0.14 MB
Occupancy Rate 3.69% 5.19% 5.43% 2.70%
Ratio to Dense Voxel 6.14% 8.21% 8.55% 4.52%

1 Å Dense Voxel (643) 24 MB
OctSurf (depth ¼ 6) 0.98 MB 1.37 MB 1.44 MB 0.72 MB
Occupancy Rate 2.35% 3.34% 3.55% 1.67%
Ratio to Dense Voxel 4.08% 5.72% 5.99% 2.98%

0.5 Å Dense Voxel (1283) 192 MB
OctSurf (depth ¼ 7) 4.98 MB 7.07 MB 7.51 MB 3.54 MB
Occupancy Rate 1.29% 1.84% 1.94% 0.89%
Ratio to Dense Voxel 2.59% 3.68% 3.91% 1.84%

0.25 Å Dense Voxel (2563) 1,536 MB
OctSurf (depth ¼ 8) 21.88 MB 31.36 MB 33.03 MB 15.19 MB
Occupancy Rate 0.64% 0.93% 0.98% 0.44%
Ratio to Dense Voxel 1.42% 2.04% 2.15% 0.99%

0.125 Å Dense Voxel (5123) 12,288 MB
OctSurf (depth ¼ 9) 87.54 MB 126.22 MB 133.09 MB 60.12 MB
Occupancy Rate 0.30% 0.43% 0.45% 0.20%
Ratio to Dense Voxel 0.71% 1.03% 1.08% 0.49%

0.0625 Å Dense Voxel (10243) 98,304 MB
OctSurf (depth ¼ 10) 325.66 MB 468.45 MB 493.64 MB 221.88 MB
Occupancy Rate 0.12% 0.17% 0.18% 0.08%
Ratio to Dense Voxel 0.33% 0.48% 0.50% 0.23%

Fig. 8. The density plot of (a) storage usage of OctSurf over the entire PDBbind refined set after a log transformation with base 10 and (b) the occupancy rates of complexes at
different resolutions; and (c) the linear relationship between the storage size ratio of OctSurf versus dense voxel (DV), and occupancy rate.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
study the variation of occupancy rates of these complexes when
increasing resolution. Fig. 8(b) shows the distribution of occupancy
rates for the 4463 protein-ligand complexes. Consistent with the
observation in Table 1, the overall occupancy rate is distributed over
a narrower interval of smaller values at higher resolutions. Fig. 8(c)
shows the rough linear relationship between the storage size ratio
(with respect to dense voxel storage usage) and the occupancy rate.
Table 2 shows the average storage usage and occupancy rates, and
we see that the storage used by dense voxel representations
generally grows cubically with respect to the resolution, e.g., from
24 MB at 1 Å to 8 times larger, 192 MB, at 0.5 Å. When approaching
Table 2
Average storage usage of the pocket-ligand complexes in the PDBbind refine set in the O

Resolutions of Voxel Outputs Size of Dense Voxels (MB) Size o

2 Å 3 0.22
1 Å 24 1.22
0.5 Å 192 6.27
0.25 Å 1536 27.79
0.125 Å 12,288 111.55
0.0625 Å 98,304 413.64

9

0.0625 Å, the dense voxel representation of a single complex can
reach nearly 100 GB. We observe that the OctSurf’s storage intake
only grows quadratically.

3.2.2. GPU memory consumption and computation time of 3D-CNN
training

We also compare the GPU memory consumption and time
needed to train CNN models on OctSurf and dense voxel repre-
sentations under various resolutions. The GPU memory is
measured in the unit of Mebibytes (MiB), which are each equivalent
to 220 bytes or 1.048MB. The results of VGG and ResNet training are
ctSurf and dense voxel (DV) representations.

f OctSurf (MB) Ratio (%) of OctSurf/DV Occupancy Rate (%)

7.33 4.59
5.08 2.96
3.27 1.64
1.81 0.82
0.91 0.38
0.42 0.15



Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
listed in Table 3 and Table 4, respectively. The term OOM in Tables 3
and 4 indicates “out of memory” during computation. Except for
cases at the resolution of 0.0625 Å, all models are trained in 10
epochs with a batch size of 8. At the highest resolution of 0.0625 Å,
due to the large size of the representation data, the training batch
size is reduced to 4.

As shown in Tables 3 and 4, the 3D-CNN modeling with OctSurf
takes much less memory than modeling with dense voxels. Note
that the GPU memory does hold not only 3D data representations
but also hidden layer feature maps and neural network parameters,
such as stochastic gradients and filters used in hidden layers.
Therefore, GPU memory consumption is larger than just the file
storage. As discussed earlier, the dense voxel representation often
requires a larger storage size; thus it often causes the out of GPU
memory issue at higher resolutions during the 3D-CNN modeling.
In contrast, multiple lightweight OctSurfs even at 0.0625 Å can be
fit into a single GPU’s memory. In addition, because of the efficiency
of CNN operations designed for the OctSurf representation, the
training time is significantly reduced. For example, the VGG model
drops by a factor of 4 at the 1 Å resolution. For ResNet with a more
complex network structure, the reduction in the training time is
more substantial.

3.2.3. Predictive performance of CNN
A series of VGG and ResNet models are trained using both

OctSurf and dense voxel inputs at different resolutions and then
tested on 285 protein-ligand complexes in the core test dataset to
predict their binding affinities. We replicate the training and test
process five times for each model and report their averaged pre-
dictive performance in Table 5. Five statistical metrics [11,40,50] are
derived from the observed and predicted binding affinities. They
include the square of the Pearson correlation coefficient (Pearson
r2), Spearman’s rank correlation coefficient r, Kendall rank corre-
lation coefficientt, Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE). Note that we use the mean squared error as
the loss function together with an L2 regularizer that penalizes
large values for network parameters during the training. We
multiply the regularizer by aweight of 0.01 in the training objective
function, which plays the tradeoff between the loss function and
the regularizer. Both models are trained by the stochastic gradient
descent with the momentum algorithm, with a decaying learning
rate (from 0.01 to 1e-7). We run the training algorithm 100 epochs
and monitor performance on the validation dataset to make sure
that the loss value becomes stable before we report model pre-
diction performance. At the highest resolution at 0.0625 Å, because
of the changing of the batch size from 8 to 4, we run 50 epochs to
maintain the same number of iterations.

A recent study [27] has pointed out the potential dilation
problem when performing convolution operations on sparse ob-
jects. They find that convolution focusing only on those surface
voxels often outperforms the full convolution over the entire 3D
grid for a surface representation. Their finding is consistent with
our observations in Table 5 that CNN models built on the OctSurf
Table 3
The efficiency of the VGG network training with OctSurf.

Resolutions of Voxel
Outputs

GPU Memory Usage of Dense
Voxels (MiB)

GPU Memory Usage of
OctSurf (MiB)

2 Å 3915 1099
1 Å 5067 1867
0.5 Å OOM 2379
0.25 Å OOM 3531
0.125 Å OOM 5067
0.0625 Å OOM 17,355

OOM: out of memory.

10
representation outperform the counterparts trained on the dense
voxel data at all different resolutions. The t-tests are conducted to
compare the RMSE metrics between OctSurf and dense voxel rep-
resentations. The small p-values, as shown in Supplementary Ma-
terials Table S2 indicate that the null hypothesis that two
representations achieving the same RMSE should be rejected, thus
we conclude that the performance of two representations are
different at the 0.01 significance level. Although ResNet has more
convolutional layers, it is prone to the dilation issue for dense voxel
inputs as discussed in Section 2.3. It may explain why ResNet
models with dense voxel inputs produce worse performance than
VGG models. On the other hand, we do not observe a similar trend
with the OctSurf input.

When comparing among the different resolutions of OctSurf,
the ResNet models perform the best at the 1 Å resolution. It does
not meet our original expectation that higher resolution may boost
the prediction performance. There are a few possible reasons for
this. Octant-associated features in this study are derived from the
atomic features, which may not accurately reflect the information
in the granularity that a high resolution deserves (e.g., many
neighbor octants have the same atomic features). One of the
possible ways to improve the performance is to map electrostatic,
hydrophobic, and hydrogen bonding potentials on the protein and
ligand surfaces, and then derive the voxel features as new input for
3D-CNN modeling. Meanwhile, models developed at a higher res-
olution tend to include more parameters, which might cause
overfitting considering that the size of the current protein-ligand
training set is not quite large. With more protein-ligand com-
plexes becoming available in public databases in the near future,
the overfitting problem may be alleviated. Since proteins in the
PDBbind core or CASF are grouped into 57 protein classes, each of
which consists of five protein-ligand complexes. We also analyze
how well models predict against each specific protein target in the
core test data. We group the predicted binding affinity of the core
set according to the protein target and calculate the Pearson cor-
relation of predicted and observed binding constants for each
target class. The histogram of Pearson Correlation for each of fifty-
seven proteins in the core set is summarized in Fig. 9. More than
50% of target clusters have a Pearson correlation larger than 0.8.
Predicted binding constants of each tested complex as well as the
Pearson coefficient for each protein target are available in Table S3
of Supplementary Materials.

Besides the PDBbind-v2016 core set, later we extract new 1146
and 394 protein-ligand complexes from the general and refined
sets of the latest version of PDBbind (v2019). These two protein-
ligand complex datasets are used as additional test sets for model
evaluation. As shown in Fig. 10, we obtain the same observation on
these two new test sets that the OctSurf representation yields
better performance than the Dense Voxel representation. For this
particular experiment, we only build ResNet and VGGmodels at the
resolution of 1 Å. More detailed metrics can be found in Supple-
mentary Materials Table S4.
Training Time of Dense Voxels
(hour:min:second)

Training Time of OctSurf
(hour:min:second)

0:16:04 0:12:08
0:44:43 0:12:02
OOM 0:57:13
OOM 3:24:27
OOM 8:07:24
OOM 28:47:50



Table 4
The efficiency of the ResNet network training with OctSurf.

Resolutions of Voxel
Outputs

GPU Memory Usage of Dense Voxels
(MiB)

GPU Memory Usage of OctSurf
(MiB)

Training Time of Dense Voxels
(hour:min:sec)

Training Time of OctSurf
(hour:min:sec)

2 Å 4985 1113 0:30:23 0:10:26
1 Å 17,241 1929 2:08:26 0:11:57
0.5 Å OOM 3161 OOM 0:51:18
0.25 Å OOM 5476 OOM 3:20:34
0.125 Å OOM 17,241 OOM 14:05:23
0.0625 Å OOM 31,397 OOM 56:41:58

OOM: out of memory.

Table 5
The mean and standard deviation of different model evaluation metrics for the five replicates of every VGG and ResNet model at the specific resolution.

Dense Voxels OctSurf

Resolution Metrics r2 r t RMSE MAE r2 r t RMSE MAE
2 Å VGG 0.47 ± 0.006 0.68 ± 0.005 0.49 ± 0.003 1.67 ± 0.006 1.35 ± 0.005 0.58 ± 0.004 0.75 ± 0.003 0.56 ± 0.002 1.51 ± 0.008 1.22 ± 0.007

ResNet 0.42 ± 0.002 0.65 ± 0.003 0.46 ± 0.004 1.74 ± 0.011 1.40 ± 0.006 0.60 ± 0.010 0.77 ± 0.006 0.57 ± 0.006 1.48 ± 0.008 1.17 ± 0.005
1 Å VGG 0.49 ± 0.007 0.70 ± 0.005 0.50 ± 0.004 1.64 ± 0.018 1.32 ± 0.018 0.62 ± 0.010 0.78 ± 0.008 0.58 ± 0.006 1.45 ± 0.012 1.16 ± 0.010

ResNet 0.46 ± 0.021 0.68 ± 0.015 0.49 ± 0.011 1.69 ± 0.019 1.36 ± 0.012 0.63 ± 0.012 0.79 ± 0.008 0.59 ± 0.009 1.45 ± 0.024 1.16 ± 0.019
0.5 Å VGG OOM OOM OOM OOM OOM 0.62 ± 0.005 0.79 ± 0.005 0.59 ± 0.004 1.44 ± 0.017 1.16 ± 0.016

ResNet OOM OOM OOM OOM OOM 0.61 ± 0.013 0.78 ± 0.006 0.58 ± 0.006 1.48 ± 0.027 1.19 ± 0.021
0.25 Å VGG OOM OOM OOM OOM OOM 0.60 ± 0.012 0.77 ± 0.007 0.58 ± 0.007 1.48 ± 0.026 1.18 ± 0.020

ResNet OOM OOM OOM OOM OOM 0.60 ± 0.016 0.77 ± 0.012 0.58 ± 0.011 1.48 ± 0.025 1.18 ± 0.018
0.125 Å VGG OOM OOM OOM OOM OOM 0.55 ± 0.017 0.75 ± 0.009 0.55 ± 0.010 1.57 ± 0.050 1.27 ± 0.037

ResNet OOM OOM OOM OOM OOM 0.49 ± 0.045 0.70 ± 0.030 0.51 ± 0.027 1.66 ± 0.103 1.35 ± 0.086
0.0625 Å VGG OOM OOM OOM OOM OOM 0.49 ± 0.007 0.71 ± 0.007 0.51 ± 0.005 1.66 ± 0.026 1.33 ± 0.024

ResNet OOM OOM OOM OOM OOM 0.42 ± 0.038 0.65 ± 0.029 0.46 ± 0.025 1.83 ± 0.107 1.49 ± 0.088

OOM: out of memory.

Fig. 9. Histogram of Pearson Correlation of predicted vs. observed binding constants
for each of 57 protein members within the core set. Predictions are chosen from the
ResNet model trained with OctSurf at 1 Å resolution.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
3.2.4. The assessment of model sensitivity toward potential biases
in the training data

To explore the effect of potential hidden data bias on our
models, we implement a set of experiments and inspect con-
structed 3D-CNN models based on recompiled decoy training data.
Yang et al. [34] showed that models derived from protein or ligand
structures alone can still produce a comparatively good perfor-
mance on a test dataset. So we are interested in checking whether
this would happen to our models or not. We split the training
protein-ligand complexes into two decoy sets that contain ligand or
protein structures alone. Then we re-train both ResNet and VGG
models using the new decoy data and test their performances on
core set followed the same decoy treatment. For all the bias
assessment experiments in this section, we always set the volu-
metric resolution at 1 Å because ResNet and VGG models often
11
yield better performance on the core set under this resolution in
our previous analyses. To ensure the model consistency, we repeat
each model’s training process five times and generate the box plot,
as illustrated in Fig. 11, to summarize different models’ predictive
performance. Compared with the original models, the performance
of new models built on the two decoy sets drops significantly. The
mean Pearson correlation coefficient of observed and predicted
binding constants by five ResNet models trained with the protein-
ligand complex is about 0.63, while the same correlation co-
efficients of ResNet models built from pocket or ligand structures
are only approximately 0.42 and 0.54, respectively. Although our
observation contradicts with Yang’s previous findings, it does not
necessarily mean that our models capture real protein-ligand
interaction patterns.

The second control experiment is designed to investigate the
potential impact of protein similarity between training and test sets
on our model performance. We first calculate the pairwise topo-
logical similarity between each pair of proteins in the general/
refined set and core set. The topological similarity of protein
structures is measured by TM-score [51] to avoid the power-law
dependence with the length of the protein. If the similarity coef-
ficient between a protein-ligand complex in the general/refined set
and any complex in core set is higher than the specified cutoff, this
complex will be removed from the training set. A series of TM-score
similarity thresholds ranging from 1 to 0.5 are used to control the
degree of similarity between two data sets. As shown in Fig. 12(a),
the higher the cutoff, the more structurally similar proteins will
remain in the training set. For each new training set, we follow a
similar procedure as previously described to build the model.
Finally, we check how the model’s predictive performance varies
with the topological similarity between the training and test pro-
tein complexes and illustrate the results in Fig. 12(b). In our
experiment, both ResNet and VGG models are not very sensitive to
the selection of similarity thresholds, although models derived
from larger training sets seem to show slightly better performance.



Fig. 10. Prediction Pearson r2 performance on General 2019 and Refined 2019, based on 1 Å resolution.

Fig. 11. The boxplot to demonstrate the performance change of OctSurf-based 3D-CNN
models trained with decoy sets of ligand or protein pocket structures alone.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
Interestingly, Su et al. [32] showed such bias sensitivity level is also
dependent on selected machine learning approaches. For instance,
it seems that tree-based models, including Random Forest and
Decision Tree, are somehow more prone to be affected by the
similarity cutoff. Several other nonlinear machine learning
methods, such as linear support vector regression and Bayesian
Ridge Regression, do not show significant performance variation in
the same study.
Fig. 12. (a) The number of remaining protein-ligand complexes in the training set after applyi
similar to any test proteins. (b) The box blot diagram of Pearson r2 for five duplicate ResNet an

12
Even though some remarkable progress has been achieved, AI
application in drug discovery is still in its infancy. There are still a
few major bottlenecks limiting the successful application of ma-
chine learning in protein-ligand affinity prediction and other sci-
entific fields. Besides the lack of sufficiently reliable datasets to
train robust models, current machine learning models excel in
recognizing statistical patterns amongst vast reams of data, but are
not capable of reasoning about the cause-effect relations, e.g., why
ligands will have strong or weak binding affinity against relevant
protein targets. From the algorithm development point of view,
future intelligence systems for the protein-ligand affinity predic-
tion require the appropriate incorporation of underlying prior
domain knowledge, biophysics causality, and interpretable visual-
ization techniques into data-driven machine learning frameworks.
4. Conclusion

In this paper, we describe a new 3D-CNN framework to predict
the protein-ligand binding affinity. We implement an octree-based
volumetric representation (OctSurf) to capture the contact and
shape complementary between protein pocket and bound ligand
surfaces. It provides an alternative volumetric representation to
describe the interaction and recognition between the protein and
bound ligand. The obtained volumetric surface representation can
be further fed into two deep learning architectures, VGG and
ResNet, to construct 3D-CNN models and predict protein-ligand
binding affinity. Our OctSurf representation shows storage and
ng different TM-score similarity cutoffs to remove the training cases that are structurally
d VGG models built on each of the different training sets.



Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
memory efficiency over the traditional dense voxel representation
of 3D molecular surfaces at the same resolution. It also reduces the
computational overhead of 3D-CNN by restricting the convolution
operation over octants near the molecular surface region. More-
over, it now allows us to reconstruct the 3D protein-ligand surface
representation in much finer resolutions and build 3D-CNN pre-
dictive models, which are often computationally prohibited by
conventional voxel-based methods. With much less GPU memory
usage and computation cost, constructed CNN models on OctSurf
demonstrate better prediction performance than the models
trained using dense voxels of the same molecular surface dataset.
We also run several control experiments to show that the predic-
tive performance of our models deteriorates when using the pro-
tein or ligand structures alone as the training set, but they are not
sensitive to protein similarity between training and test sets.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

This research is supported by research funds from the University
of Connecticut and has not received any grant from federal funding
agencies in the US, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jmgm.2021.107865.

References

[1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3d shapenets: a deep
representation for volumetric shapes, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 1912e1920.

[2] D. Maturana, S. Scherer, Voxnet: a 3d convolutional neural network for real-
time object recognition, in: 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2015,
pp. 922e928.

[3] C. Shen, J. Ding, Z. Wang, D. Cao, X. Ding, T. Hou, From machine learning to
deep learning: advances in scoring functions for protein–ligand docking,
Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 (2020) e1429.

[4] I. Wallach, M. Dzamba, A. Heifets, AtomNet: a Deep Convolutional Neural
Network for Bioactivity Prediction in Structure-Based Drug Discovery, ArXiv
Prepr. ArXiv1510.02855, 2015.

[5] D. Kuzminykh, D. Polykovskiy, A. Kadurin, A. Zhebrak, I. Baskov, S. Nikolenko,
R. Shayakhmetov, A. Zhavoronkov, 3D molecular representations based on the
wave transform for convolutional neural networks, Mol. Pharm. 15 (2018)
4378e4385.

[6] J. Jimenez, S. Doerr, G. Mart\’\inez-Rosell, A.S. Rose, G. De Fabritiis, DeepSite:
protein-binding site predictor using 3D-convolutional neural networks, Bio-
informatics 33 (2017) 3036e3042.

[7] M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, D.R. Koes, Protein–ligand scoring
with convolutional neural networks, J. Chem. Inf. Model. 57 (2017) 942e957.

[8] J. Hochuli, A. Helbling, T. Skaist, M. Ragoza, D.R. Koes, Visualizing convolu-
tional neural network protein-ligand scoring, J. Mol. Graph. Model. 84 (2018)
96e108.

[9] A.H. Mahmoud, M.R. Masters, Y. Yang, M.A. Lill, Elucidating the multiple roles
of hydration for accurate protein-ligand binding prediction via deep learning,
Commun. Chem. 3 (2020) 1e13.

[10] H. Hassan-Harrirou, C. Zhang, T. Lemmin, RosENet: improving binding affinity
prediction by leveraging molecular mechanics energies with an ensemble of
3D convolutional neural networks, J. Chem. Inf. Model. (2020).

[11] J. Jimenez, M. Skalic, G. Martinez-Rosell, G. De Fabritiis, K deep: protein–ligand
absolute binding affinity prediction via 3d-convolutional neural networks,
J. Chem. Inf. Model. 58 (2018) 287e296.

[12] W. Torng, R.B. Altman, 3D deep convolutional neural networks for amino acid
environment similarity analysis, BMC Bioinf. 18 (2017) 302.

[13] M. Simonovsky, J. Meyers, DeeplyTough: Learning Structural Comparison of
Protein Binding Sites, BioRxiv., 2019, p. 600304.

[14] L. Pu, R.G. Govindaraj, J.M. Lemoine, H.-C. Wu, M. Brylinski, DeepDrug3D:
classification of ligand-binding pockets in proteins with a convolutional
13
neural network, PLoS Comput. Biol. 15 (2019), e1006718.
[15] W. Torng, R.B. Altman, High precision protein functional site detection using

3D convolutional neural networks, Bioinformatics 35 (2019) 1503e1512.
[16] M.M. Stepniewska-Dziubinska, P. Zielenkiewicz, P. Siedlecki, Improving

detection of protein-ligand binding sites with 3D segmentation, Sci. Rep. 10
(2020) 1e9.

[17] S. Yin, E.A. Proctor, A.A. Lugovskoy, N. V Dokholyan, Fast screening of protein
surfaces using geometric invariant fingerprints, Proc. Natl. Acad. Sci. Unit.
States Am. 106 (2009) 16622e16626.

[18] V. Venkatraman, Y.D. Yang, L. Sael, D. Kihara, Protein-protein docking using
region-based 3D Zernike descriptors, BMC Bioinf. 10 (2009) 407.

[19] D. Kihara, L. Sael, R. Chikhi, J. Esquivel-Rodriguez, Molecular surface repre-
sentation using 3D Zernike descriptors for protein shape comparison and
docking, Curr. Protein Pept. Sci. 12 (2011) 520e530.

[20] X. Zhu, Y. Xiong, D. Kihara, Large-scale binding ligand prediction by improved
patch-based method Patch-Surfer2. 0, Bioinformatics 31 (2014) 707e713.

[21] S. Daberdaku, C. Ferrari, Antibody interface prediction with 3D Zernike de-
scriptors and SVM, Bioinformatics 35 (2019) 1870e1876.

[22] P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M.M. Bronstein,
B.E. Correia, Deciphering interaction fingerprints from protein molecular
surfaces using geometric deep learning, Nat. Methods 17 (2020) 184e192.

[23] S.K. Mylonas, A. Axenopoulos, P. Daras, DeepSurf: A Surface-Based Deep
Learning Approach for the Prediction of Ligand Binding Sites on Proteins,
ArXiv Prepr. ArXiv2002.05643, 2020.

[24] Y. Li, S. Pirk, H. Su, C.R. Qi, L.J. Guibas, Fpnn: field probing neural networks for
3d data, Adv. Neural Inf. Process. Syst. (2016) 307e315.

[25] B. Graham, Sparse 3D Convolutional Neural Networks, ArXiv Prepr.
ArXiv1505.02890, 2015.

[26] B. Graham, L. van der Maaten, Submanifold Sparse Convolutional Networks,
ArXiv Prepr. ArXiv1706.01307, 2017.

[27] B. Graham, M. Engelcke, L. Van Der Maaten, 3d semantic segmentation with
submanifold sparse convolutional networks, in: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 9224e9232.

[28] G. Riegler, A. Osman Ulusoy, A. Geiger, Octnet: learning deep 3d representa-
tions at high resolutions, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 3577e3586.

[29] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, X. Tong, O-cnn: octree-based con-
volutional neural networks for 3d shape analysis, ACM Trans. Graph. 36
(2017) 72.

[30] J. Sieg, F. Flachsenberg, M. Rarey, In need of bias control: evaluating chemical
data for machine learning in structure-based virtual screening, J. Chem. Inf.
Model. 59 (2019) 947e961.

[31] L. Chen, A. Cruz, S. Ramsey, C.J. Dickson, J.S. Duca, V. Hornak, D.R. Koes,
T. Kurtzman, Hidden bias in the DUD-E dataset leads to misleading perfor-
mance of deep learning in structure-based virtual screening, PLoS One 14
(2019), e0220113.

[32] M. Su, G. Feng, Z. Liu, Y. Li, R. Wang, Tapping on the black box: how is the
scoring power of a machine-learning scoring function dependent on the
training set? J. Chem. Inf. Model. 60 (2020) 1122e1136.

[33] C. Shen, Y. Hu, Z. Wang, X. Zhang, H. Zhong, G. Wang, X. Yao, L. Xu, D. Cao,
T. Hou, Can machine learning consistently improve the scoring power of
classical scoring functions? Insights into the role of machine learning in
scoring functions, Briefings Bioinf. (2020).

[34] J. Yang, C. Shen, N. Huang, Predicting or pretending: artificial intelligence for
protein-ligand interactions lack of sufficiently large and unbiased datasets,
Front. Pharmacol. 11 (2020) 69.

[35] M.M. Mysinger, M. Carchia, J.J. Irwin, B.K. Shoichet, Directory of useful decoys,
enhanced (DUD-E): better ligands and decoys for better benchmarking,
J. Med. Chem. 55 (2012) 6582e6594.

[36] S. Lapuschkin, S. W€aldchen, A. Binder, G. Montavon, W. Samek, K.-R. Müller,
Unmasking clever hans predictors and assessing what machines really learn,
Nat. Commun. 10 (2019) 1e8.

[37] Z. Liu, M. Su, L. Han, J. Liu, Q. Yang, Y. Li, R. Wang, Forging the basis for
developing protein–ligand interaction scoring functions, Acc. Chem. Res. 50
(2017) 302e309.

[38] M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, R. Wang, Comparative assessment of
scoring functions: the CASF-2016 update, J. Chem. Inf. Model. 59 (2018)
895e913.

[39] M.M. Stepniewska-Dziubinska, P. Zielenkiewicz, P. Siedlecki, Development
and evaluation of a deep learning model for protein–ligand binding affinity
prediction, Bioinformatics 34 (2018) 3666e3674.

[40] Y. Li, M.A. Rezaei, C. Li, X. Li, DeepAtom: a framework for protein-ligand
binding affinity prediction, in: 2019 IEEE Int. Conf. Bioinforma. Biomed.,
2019, pp. 303e310.

[41] F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, M. Scharf, The Double cubic
Lattice method: efficient approaches to numerical integration of surface area
and volume and to dot surface contouring of molecular assemblies, J. Comput.
Chem. 16 (1995) 273e284, https://doi.org/10.1002/jcc.540160303.

[42] E.L. Willighagen, J.W. Mayfield, J. Alvarsson, A. Berg, L. Carlsson, N. Jeliazkova,
S. Kuhn, T. Pluskal, M. Rojas-Chert�o, O. Spjuth, others, the Chemistry Devel-
opment Kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and
substructure searching, J. Cheminf. 9 (2017) 33.

[43] G. Riegler, A.O. Ulusoy, H. Bischof, A. Geiger, Octnetfusion: learning depth
fusion from data, in: 2017 Int. Conf. 3D Vis., 2017, pp. 57e66.

[44] C. Crassin, F. Neyret, S. Lefebvre, E. Eisemann, Gigavoxels: ray-guided

https://doi.org/10.1016/j.jmgm.2021.107865
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref1
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref1
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref1
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref1
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref2
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref2
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref2
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref2
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref3
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref3
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref3
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref4
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref4
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref4
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref5
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref5
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref5
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref5
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref5
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref6
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref7
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref7
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref7
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref8
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref8
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref8
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref8
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref9
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref9
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref9
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref9
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref10
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref10
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref10
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref11
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref11
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref11
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref11
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref12
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref12
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref13
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref13
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref14
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref14
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref14
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref15
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref15
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref15
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref16
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref16
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref16
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref16
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref17
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref17
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref17
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref17
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref18
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref18
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref19
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref19
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref19
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref19
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref20
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref20
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref20
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref21
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref21
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref21
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref22
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref22
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref22
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref22
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref23
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref23
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref23
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref24
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref24
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref24
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref25
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref25
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref26
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref26
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref27
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref27
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref27
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref27
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref28
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref28
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref28
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref28
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref29
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref29
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref29
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref30
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref30
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref30
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref30
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref31
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref31
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref31
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref31
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref32
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref32
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref32
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref32
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref33
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref33
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref33
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref33
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref34
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref34
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref34
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref35
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref35
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref35
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref35
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref36
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref36
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref36
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref36
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref36
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref37
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref37
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref37
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref37
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref38
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref38
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref38
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref38
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref39
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref39
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref39
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref39
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref40
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref40
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref40
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref40
https://doi.org/10.1002/jcc.540160303
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref42
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref42
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref42
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref42
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref42
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref43
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref43
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref43
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref44


Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865
streaming for efficient and detailed voxel rendering, in: Proc. 2009 Symp.
Interact. 3D Graph. Games, 2009, pp. 15e22.

[45] G.K.M. Cheung, T. Kanade, J.-Y. Bouguet, M. Holler, A real time system for
robust 3D voxel reconstruction of human motions, in: Proc. IEEE Conf. Com-
put. Vis. Pattern Recognition, CVPR 2000 (Cat. No. PR00662), 2000,
pp. 714e720.

[46] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, ArXiv Prepr. ArXiv1409. 1556 (2014).

[47] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770e778.

[48] C. Yang, A. Rangarajan, S. Ranka, Visual explanations from deep 3D
14
convolutional neural networks for Alzheimer’s disease classification, AMIA
Annu. Symp. Proc. (2018) 1571.

[49] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, ArXiv Prepr. ArXiv1502.03167, 2015.

[50] M. Karimi, D. Wu, Z. Wang, Y. Shen, DeepAffinity: interpretable deep learning
of compound–protein affinity through unified recurrent and convolutional
neural networks, Bioinformatics 35 (2019) 3329e3338.

[51] Y. Zhang, J. Skolnick, Scoring function for automated assessment of protein
structure template quality, Proteins Struct. Funct. Bioinforma. 57 (2004)
702e710.

http://refhub.elsevier.com/S1093-3263(21)00034-6/sref44
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref44
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref44
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref45
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref45
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref45
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref45
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref45
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref46
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref46
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref47
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref47
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref47
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref48
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref48
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref48
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref49
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref49
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref50
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref50
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref50
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref50
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref51
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref51
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref51
http://refhub.elsevier.com/S1093-3263(21)00034-6/sref51

	OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction
	1. Introduction
	2. Materials and method
	2.1. Datasets
	2.2. Molecular representation – OctSurf
	2.2.1. The generation of van der Waals surface points
	2.2.2. The octree data structure representing surface points

	2.3. 3D-CNN operations on OctSurf

	3. Experiment results and discussion
	3.1. 3D OctSurf volumetric representation of protein and ligand surfaces
	3.2. Performance evaluation
	3.2.1. Comparison of data storage for OctSurf vs. dense voxel representations
	3.2.2. GPU memory consumption and computation time of 3D-CNN training
	3.2.3. Predictive performance of CNN
	3.2.4. The assessment of model sensitivity toward potential biases in the training data


	4. Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References


